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An olefin disconnection strategy for the practical synthesis of
(+)-brefeldin A: olefin cross metathesis and intramolecular

Horner–Wadsworth–Emmons olefinationI
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Abstract—The practical and convergent total synthesis of (+)-brefeldin A has been achieved by an olefin disconnection strategy.
Key features of the total synthesis include the efficient formation of C2 and C10 olefins, employing an olefin cross metathesis
(CM) reaction and an intramolecular HWE olefination, respectively.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Retrosynthetic analysis.
We recently reported the total synthesis of (+)-brefeldin
A, employing the stereoselective Pd(0)-catalyzed cycliza-
tion and trans-vinylogous ester anion strategy.1 As a
part of our ongoing studies directed toward the synthe-
sis of the diversified brefeldin A analogs, we have been
interested in more practical and versatile synthetic strat-
egy, which enables us to establish the structure-activity
relationship of this medicinally important macrolac-
tone.2 Herein, we report the olefin-disconnection strat-
egy for the synthesis of (+)-brefeldin A, which exploits
olefin cross metathesis (CM)3 and intramolecular Hor-
ner–Wadsworth–Emmons (HWE) olefination4 for the
efficient elaboration of two internal trans-olefins as well
as the 13-membered lactone skeleton of the target
molecule.

As indicated by the retrosynthetic plan in Figure 1, our
synthetic approach developed for the practical and
convergent synthesis of brefeldin A was guided by
two olefins disconnection strategy. At the starting point
of our present synthesis, one example of intramolecular
HWE olefination in the synthesis of brefeldin A was
reported.5a However, for our synthesis, we decided to
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pursue the reversed HWE strategy, because our unique
reversed strategy envisages synthetic versatility as well
as some crucial advantages in terms of stereoselectivity,
yield and synthetic efficiency in combination of the req-
uisite building blocks. Thus, the initial disconnection of
the C2–C3 (refer to the numbering system of brefeldin
series) olefin in upper side chain would lead to the key
precursor 2 for an intramolecular HWE olefination.
The fully functionalized glyoxylate-phosphonate 2
could be effectively obtained from our unique bicyclic
lactone 3 by employing the direct phosphonate addition
to the lactone moiety followed by the introduction of
glyoxylate ester. For the second disconnection of
C10–C11 olefin, we explored a tactic adopting the
olefin cross metathesis reaction of the bicyclic lactone
4 and 5.5b,6
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Table 1. Cross metathesis of bicyclic lactones
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Entry Compounds Time (h) Yields (%)a E:Zb

1 4 48 15 (91)c 4–5:1
2 6 24 79 (88)c 7:1
3 8 24 32 (90)c 4:1
4 6+5 dimer 12 88 7:1
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a Isolated yields after column chromatography.
b Determined by the 1H NMR spectra of the product mixture.
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Scheme 1. Reagents and conditions: (a) n-BuLi, 9, THF, �78 �C, 85%;
(b) DHP, PPTS, CH2Cl2; (c) TBAF, THF, 91% for two steps; (d)
bromoacetyl bromide, Et3N, DMAP, CH2Cl2, 0 �C; (e) AgNO3,
CH3CN, 90% for two steps; (f) NaOAc, DMSO, then, iPr2NEt, LiCl,
CH3CN, 59%; (g) PPTS, MeOH; (h) NaBH4, MeOH, �78 �C, 71% for
two steps.
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We commenced our synthesis by preparation of the req-
uisite bicyclic lactone 3 as shown in Table 1. The known
bicyclic lactone 47 was initially desulfonylated to the
corresponding lactone 6 (6% Na/Hg, B(OH)3, MeOH)
with the highly strained bicyclic lactone moiety intact.1,8

With both substrates 59 and 6 in hand, the projected CM
reaction was attempted (entry 2). To our delight, the
CM of 5 and 6, in the presence of 1st-generation
Grubbs’ catalyst 7, in refluxing CH2Cl2 proceeded
smoothly to give the desired intermediate 3 possessing
(E)-olefin in an excellent yield, along with a small
amount of the (Z)-isomer (E:Z = 7:1). When 3 equiv
of 5 was subjected to the cross metathesis conditions,
the homodimer of 5 was readily recovered. Interestingly,
the homodimer proved to be as reactive as monomer 5
in terms of yield and reaction time10 (entry 4). On the
other hand, the CM reaction of the more sterically hin-
dered substrate 4 or ring-opened hydroxycyclopentane
intermediate 8 resulted in incomplete conversion (entries
1 and 3). It should be noted that lactone 6 as an opti-
mum substrate for CM reaction provides a considerably
improved E/Z selectivity compared to that of the previ-
ous report,5b combined with the excellent chemical yield
and an economical benefit using 1st-generation Grubbs
catalyst.

The side chain tethered lactone 3 was converted to the
phosphonate 9, as shown in Scheme 1, through a
three-step sequence (lactone opening with phosphonate
anion, THP protection, and TBS deprotection), for the
intramolecular HWE reaction. To this end, it was neces-
sary to introduce the glyoxylate ester moiety (e.g.,
9! 2) to the secondary alcohol of 9. We initially at-
tempted direct coupling of 9 with ethyl glyoxylate in
the presence of Otera’s catalyst11 (Eq. 1). However, this
ester exchange failed to provide the desired intermediate
2. It was found that the preparation and isolation of the
glyoxylate ester 2 is quite difficult due to facile elimina-
tion of the glyoxylate and polymerization.
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After numerous attempts,12 the Kornblums oxidation13

emerged as the most attractive approach, which involves
the transformation of a-bromo ester to the correspond-
ing glyoxylate ester via a nitrate ester. Thus, alcohol 10
was acylated to bromoacetate 11, which in turn was
treated with AgNO3 in acetonitrile to afford nitrate ester
12 in 90% overall yield. Considering the high electrophi-
licity of glyoxylate, the intramolecular HWE reaction
was directly executed after oxidation of nitrate ester 12
(NaOAc, DMSO). Upon treatment of crude 2 with LiCl
and iPr2NEt, the cyclization by the stereoselective HWE
olefination proceeded smoothly to afford macrolactone
1214 with a spontaneous isomerization at the ring junc-
tion. To the best of our knowledge, this is the first suc-
cessful synthetic application of the glyoxylate-bearing
phosphonate as a substrate for the intramolecular
HWE reaction.

Finally, THP deprotection of 12 with PPTS in MeOH
and stereoselective reduction of C4 carbonyl afforded
(+)-brefeldin A (1), which was identical in all aspects
with the natural product.

We have also investigated the cyclization of the trans-
disubstituted precursor 18, derived from the known
trans-aldehyde 141a as shown in Scheme 2. The addition
of phosphonate 9 anion to aldehyde 14, followed by the
TPAP, oxidation, afforded b-keto phosphonate 15.
After silyl deprotection of 15, the resulting alcohol was
converted to cyclization precursor 18 in a similar man-
ner to that applied for 2. Interestingly, the HWE olefin-
ation of trans-substituted precursor 18 provided the
moderate selectivity for the new olefin geometry as
shown in Table 2 (entries 1 and 2).



Table 2. Cyclization of the trans-isomer (18) of 2
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Entry Reaction condition Yields (%)a E:Zb

1 LiCl, iPr2NEt, CH3CN, 0 �C 45 1.5:1
2 LiCl, iPr2NEt, CH3CN, rt 74 1.4:1
3 K2CO3, 18-crown-6, toluene, 70 �C 70 1:20

a Isolated yields after column chromatography.
b Determined by the 1H NMR spectra of the mixture.
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Scheme 2. Reagents and conditions: (a) n-BuLi, 9, THF, �78 �C; (b)
TPAP, NMO, 4A MS, CH2Cl2; (c) TBAF, THF, 80% for three steps;
(d) bromoacetyl bromide, Et3N, DMAP, CH2Cl2, 0 �C; (e) AgNO3,
CH3CN, 90% for two steps; (f) NaOAc, DMSO.
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The difference in the stereoselectivities of cis-precursor 2
and trans-isomer 13 implies that the complete epimeriza-
tion of the cyclization product would proceed under basic
conditions after an initial cyclization of 2 to the cis-iso-
mer of 13. Furthermore, these results proved the impor-
tance of the initial stereochemistry at the cyclopentane
ring junction for the stereoselective macrocyclization.15

It is noteworthy that treatment of 18 with K2CO3 in the
presence of 18-crown-6 provided the exclusive formation
of stereoisomer 19 (entry 3), which may also be useful for
securing a variety of (+)-brefeldin A analogs.

In summary, we have developed a practical and versatile
total synthesis of (+)-brefeldin A. The salient features of
this convergent synthetic route include the efficient ole-
fin cross metathesis of bicyclic lactone 6 and the intra-
molecular HWE olefination of unprecedented
precursor 12. Moreover, the dictation effect of the C5
stereochemistry on the C2 olefin geometry in HWE
cyclization was uncovered. These synthetic studies seem
to provide a timely contribution to the development of a
variety of (+)-brefeldin A analogs. Preparation of (+)-
brefeldin A library as an extended application of our
synthetic route is in progress and the results will be
forthcoming.
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